API Reference¶
TU Delft Astrodynamics Toolbox in Python, or tudatpy, is a library that primarily exposes the powerful set of C++ libraries, Tudat. TudatPy aims at accelerating the implementation of Tudat simulations, providing an interface between Tudat and popular machine learning frameworks and establishing a platform to provide quality education in the field of astrodynamics.
Modules
Bibliography¶
Nist reference on constants, units and uncertainty. URL: http://physics.nist.gov/cuu/Constants/index.html (visited on 2013-01-11).
Elisa Maria Alessi, Stefano Cicalo, Andrea Milani, and Giacomo Tommei. Desaturation manoeuvres and precise orbit determination for the bepicolombo mission. Monthly Notices of the Royal Astronomical Society, 423(3):2270–2278, 2012.
John D. Anderson Jr. Hypersonic and High-Temperature Gas Dynamics. American Institute of Aeronautics and Astronautics, 2006. ISBN 9781600861956. Second Edition, p469. doi:10.2514/4.861956.
B. A. Archinal, C. H. Acton, M. F. A’Hearn, A. Conrad, G. J. Consolmagno, T. Duxbury, D. Hestroffer, J. L. Hilton, R. L. Kirk, S. A. Klioner, D. McCarthy, K. Meech, J. Oberst, J. Ping, P. K. Seidelmann, D. J. Tholen, P. C. Thomas, and I. P. Williams. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015. Celestial Mechanics and Dynamical Astronomy, 2018. doi:10.1007/s10569-017-9805-5.
G. Balmino. Gravitational potential harmonics from the shape of an homogeneous body. Celestial Mechanics and Dynamical Astronomy, 60(3):331–364, 1994. doi:10.1007/BF00691901.
Dominic Dirkx, V Lainey, LI Gurvits, and PNAM Visser. Dynamical modelling of the galilean moons for the juice mission. Planetary and Space Science, 134:82–95, 2016.
Anthony R. Dobrovolskis. Inertia of any polyhedron. Icarus, 124(2):698–704, December 1996. doi:10.1006/icar.1996.0243.
Toshio Fukushima. Precise computation of acceleration due to uniform ring or disk. Celestial Mechanics and Dynamical Astronomy, 108:339–356, 2010.
D. Gondelach. A hodographic-shaping method for low-thrust trajectory design. 2012. URL: https://resolver.tudelft.nl/6a4f1673-88b1-4823-b2ef-9d864c84ab11.
D. J. Gondelach and R. Noomen. Hodographic-shaping method for low-thrust interplanetary trajectory design. Journal of Spacecraft and Rockets, 52(3):728–738, 2015. doi:10.2514/1.A32991.
G. R. Hintz. Survey of orbit element sets. Journal of guidance, control, and dynamics, 31(3):785–790, 2008. doi:10.2514/1.32237.
D. Izzo. 1st act global trajectory optimisation competition: problem description and summary of the results. Acta Astronautica, 61(9):731–734, 2007. URL: https://doi.org/10.1016/j.actaastro.2007.03.003, doi:10.1016/j.actaastro.2007.03.003.
G. Kaplan. The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models. 2006. doi:10.48550/arXiv.astro-ph/0602086.
Valéry Lainey, Luc Duriez, and Alain Vienne. New accurate ephemerides for the galilean satellites of jupiter-i. numerical integration of elaborated equations of motion. Astronomy & Astrophysics, 420(3):1171–1183, 2004.
E. Mooij. The motion of a vehicle in a planetary atmosphere. Technical Report Report LR-768, Delft University of Technology, Faculty of Aerospace Engineering, 1994.
P. Musegaas. Optimization of space trajectories including multiple gravity assists and deep space maneuvers. 2012. URL: https://resolver.tudelft.nl/02468c77-5c64-4df8-9a24-1ed7ad9d1408.
Gérard Petit and Brian Luzum. IERS conventions (2010). Tech. Rep. DTIC Document, 36:180, 01 2010.
Jorge A Pérez-Hernández and Luis Benet. Non-zero yarkovsky acceleration for near-earth asteroid (99942) apophis. Communications Earth & Environment, 3(1):10, 2022.
T. Roegiers. Application of the spherical shaping method to a low-thrust multiple asteroid rendezvous mission: implementation, limitations and solutions. 2014. URL: https://resolver.tudelft.nl/9994980c-e1df-47a6-880a-3a226797e34a.
E.M. Standish. Report of the IAU WGAS Sub-group on Numerical Standards. Highlights of Astronomy, 10:180–184, 1995. doi:10.1017/S1539299600010893.
D. A. Vallado. Fundamentals of astrodynamics and applications. Microcosm Press, 2001.
V. Vittaldev, E. Mooij, and M. C. Naeije. Unified state model theory and application in astrodynamics. Celestial Mechanics and Dynamical Astronomy, 112(3):253–282, 2012. doi:10.1007/s10569-011-9396-5.
K. F. Wakker. Fundamentals of astrodynamics. 2015.
R. A. Werner and D. J. Scheeres. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 castalia. Celestial Mechanics and Dynamical Astronomy, 65(3):313–344, 1997. doi:10.1007/BF00053511.
Robert A Werner and Daniel J Scheeres. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 castalia. Celestial Mechanics and Dynamical Astronomy, 65:313–344, 1996.
Clifford M Will. Theory and experiment in gravitational physics. Cambridge university press, 2018.
IAU. SOFA Time Scale and Calendar Tools. SOFA Documentation - disseminated by the International Astronomical Union. URL: https://www.iausofa.org/sofa_ts_c.pdf.
IAU. Resolution B2. 2012. URL: https://www.iau.org/static/resolutions/IAU2012_English.pdf.
NASA SSD. Astrodynamic parameters. URL: http://ssd.jpl.nasa.gov/?constants#ref (visited on 2012-02-21).
Wolfram Research. Stefan-boltzmann law. URL: http://scienceworld.wolfram.com/physics/Stefan-BoltzmannLaw.html (visited on 2013-01-11).